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Multi-Blade Coordinate Transformation and Its Application 
to Wind Turbine Analysis 

Gunjit Bir1 
National Renewable Energy Laboratory, Golden, Colorado, 80401 

The dynamics of wind turbine rotor blades are generally expressed in rotating frames 
attached to the individual blades. The rotor, however, responds as a whole to excitations 
such as aerodynamic gusts, control inputs, and tower-nacelle motion—all of which occur in a 
nonrotating frame. Similarly, the tower-nacelle subsystem sees the combined effect of all 
rotor blades, not the individual blades. Multi-blade coordinate transformation (MBC) helps 
integrate the dynamics of individual blades and express them in a fixed (nonrotating) frame. 
MBC involves two steps: transformation of the rotating degrees of freedom, and 
transformation of the equations of motion. This paper details the MBC operation. A new 
MBC scheme is developed that is applicable to variable-speed turbines, which may also have 
dissimilar blades. The scheme also covers control, disturbance, output, and feed-forward 
matrices. Depending on the analysis objective, wind turbine researchers may generate 
system matrices either in the first-order (state-space) form or the second-order (physical-
domain) form. We develop MBC relations for both these forms. MBC is particularly 
essential for modal and stability analyses. Commonly, wind turbine researchers first 
compute the periodic state-space matrix, time-average it over the rotor rotational period, 
and then apply conventional eigenanalysis to compute modal and stability characteristics. 
Direct averaging, however, eliminates all periodic terms that contribute to system dynamics, 
thereby producing errors. While averaging itself is not always a bad approach, it must 
follow MBC. Sample results are presented to illustrate this point and also to show the 
application of MBC to the modal and stability analysis of a 5-MW turbine.  

Nomenclature 
A = system dynamics matrix 
B = control matrix for the first-order system 
Bd = disturbance matrix for the first-order system 
b = blade number 
C = matrix consisting of damping and gyroscopic terms  
F = control matrix for the second-order system 
Fd = disturbance matrix for the second-order system 
K = matrix consisting of centrifugal terms and aerodynamic and structural stiffness terms 
m = the number of rotating degrees of freedom per blade 
M = mass matrix 
nF = nonrotating (fixed) degrees of freedom  
N = number of rotor blades 
X = physical vector comprising the system degrees of freedom 
XF = vector of degrees of freedom for the nonrotating part of the system 
XNR = vector of system degrees of freedom following MBC 

321
~,~,~ ttt  = 3x3 transformation matrices, which are functions of the rotor azimuth 

T1, T2, T3 = block-diagonal transformation matrices, which are functions of the rotor azimuth 
u = control vector 
w = disturbance vector 
Y = output vector 
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z = state-space vector 
qb = bth blade degree of freedom in the rotating frame 
Ω = rotor angular speed 
Ψ = reference (1st) blade azimuth 
Ψb = bth  blade azimuth 
( )NR = a quantity referred to in the nonrotating frame 
 

I. Introduction 
he dynamics of wind turbine rotor blades are generally expressed as rotating frames attached to the individual 
blades. The rotor, however, responds as a whole to excitations such as aerodynamic gusts, control inputs, and 

tower-nacelle motion—all of which occur in a nonrotating frame.  Similarly, the tower-nacelle subsystem sees the 
combined effect of all rotor blades, not the individual blades. Multi-blade coordinate transformation (MBC) helps 
integrate the dynamics of individual blades and express it in a fixed (nonrotating) frame. MBC offers several 
benefits. First, it properly models the dynamic interaction between the nonrotating tower-nacelle and the spinning 
rotor. Second, it offers physical insight into rotor dynamics and how the rotor interacts with fixed-system entities, 
such as wind, controls, and tower-nacelle subsystem. Third, MBC filters out all periodic terms except those which 
are integral multiples of ΩN, where Ω is the rotor angular speed and N is the number of rotor blades. A wind turbine 
system is basically a periodic system; equations governing its dynamics show periodic parameters, which arise 
because of the periodic interaction between the rotating subsystem (rotor) and the nonrotating entities (tower, 
nacelle, wind, controls, and gravity). The blade equations usually contain all harmonics. MBC shows that a rotor 
behaves as a filter, allowing only specific harmonics of blade motion to be felt by the fixed system. This filtering 
action also renders the system equations numerically well-conditioned; all nonessential periodic terms are 
eliminated. 

T 

MBC is widely used in the helicopter field. Miller1 used it to analyze the flap-motion related stability and 
control. Coleman and Feingold2 used it to analyze the rotor in-plane motion (lag motion); it was the first successful 
attempt to understand the helicopter ground resonance problem, which had been eluding the earlier researchers. 
However, these efforts applied the MBC only in a heuristic fashion. Hohenemser and Yin3 provided the first 
mathematically sound basis. Later, Johnson4 provided a systematic mathematical basis and thorough exposition of 
the MBC. Using this mathematical basis, Bir et al5 developed a numerical MBC approach that could be applied to a 
general helicopter system governed by arbitrary degrees of freedom; the approach was used for stability and 
response analysis of several helicopters. 

Because MBC offers so many benefits, it is receiving attention in the wind turbine field. Bir and Butterfield6 
included MBC in a stability analysis scheme and predicted an instability caused by coalescence between the rotor in-
plane and the tower motions. They also showed how MBC provides a physical insight into the rotor in-plane motion. 
In the turbine field, Malcolm7 appears to be the first to provide a mathematical form of the turbine equations 
following application of the MBC.  His prime motivation was to relate the inflow characteristics with the turbine 
response and to extract linearized models from general aeroelastic codes such as ADAMS8. McCoy9 extended this 
effort to obtain linear time-invariant system equations required in the standard control design approaches. Hansen 
used MBC for improved modal dynamics to avoid stall-induced vibrations10 and later combined it with an 
eigenvalues approach to study the aeroelastic stability characteristics of a three-bladed turbine11. Riziotis et al12 
applied MBC to analyze stability of two three-bladed turbines: one stall-regulated and the other pitch-regulated. Bir 
and Jonkman used MBC in conjunction with FAST 13 to study aeroelastic characteristics of a 5-MW turbine in both 
land-based and offshore configurations14. 

All attempts at MBC thus far, both in the helicopter and wind turbine fields, have assumed the rotor speed to be 
constant and the rotor blades to be similar. A modern wind turbine is rarely constant-speed. Also, turbines may not 
have identical blades, structurally or aerodynamically. We need an MBC approach that overcomes the two 
limitations. 

This paper provides a new MBC scheme that is applicable to a variable-speed turbine, which may also have 
dissimilar blades. The scheme also covers control, disturbance, output, and feed-forward matrices, which have been 
ignored to date. Depending on the analysis objective, wind turbine researchers may generate system matrices either 
in the first-order (state-space) form or the second-order (physical-domain) form. We develop MBC relations for both 
these forms. In literature, MBC is also referred to as the Fourier coordinate transformation (FCT) and as the 
Coleman transformation. 
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Section II describes the MBC operation and how it relates the blade and rotor coordinates. Section III shows how 
these basic relations are used to transform the system equations of motion from rotating to nonrotating (fixed) 
coordinates, which is the objective of MBC. We present the two possible approaches to MBC transformation, the 
substitution method and the operational method, and explain why the substitution method is better suited to 
numerical analysis. To demonstrate the application of MBC, we chose a conceptual 5-MW, three-blade, upwind 
wind turbine15. Section IV brief describes the properties of this turbine. Though MBC has several applications, it is 
essential to and mostly used for modal and stability analyses. Commonly, wind turbine researchers first compute the 
periodic state-space matrix, time-average it over the rotor rotational period, and then apply conventional 
eigenanalysis to compute modal and stability characteristics. The averaging, however, eliminates all periodic terms 
that contribute to system dynamics and can cause erroneous results. While averaging itself is not a bad approach, it 
must follow MBC (Strictly, a Floquet analysis—not averaging—must follow MBC). Section V presents sample 
results that show how MBC is essential to correct stability analysis. 
 

II. MBC: Transformation of Coordinates 
Generally, the turbine equations (i.e., the coupled tower-nacelle-rotor equations) are derived using mixed degrees 

of freedom, some of which may be in the rotating frame and the other in the nonrotating frame. This is sometimes 
desirable. For example, in some simulations studies, we may be interested in studying the tower response in the 
ground-fixed (nonrotating) frame and the blades response in their respective rotating frames. Often, however, we are 
interested in understanding the coupled behavior of tower-nacelle-rotor system. In such cases, it is desirable to 
express the full system behavior in a fixed frame. MBC helps us achieve this through a rotating-frame to 
nonrotating-frame coordinate transformation. 

Consider a rotor with N blades that are spaced equally around the rotor azimuth. In such a case, the azimuth 
location of bth blade is given by 

N
bb

πψψ 2)1( −+=         (1) 

where Ψ is the azimuth of the first (reference) blade. We assume that 0=ψ implies the first blade is vertically up. 
Let qb be a particular rotating degree of freedom for the bth blade. The MBC is a linear transformation that relates 
the rotating degrees of freedom to new degrees of freedom defined as follows [4]: 
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These new degrees of freedom are in the nonrotating (fixed) frame. In literature, these are called nonrotating degrees 
of freedom; we call these rotor coordinates because they express the cumulative behavior of all rotor blades (and not 
individual blades) in the fixed frame. The physical interpretation of each rotor coordinate depends on the degree of 
freedom it refers to. For example, if qb is a flap degree of freedom, then q0 is the rotor coning, q1c is the rotor tip-
path-plane fore-aft tilt about an axis that is horizontal and normal to the rotor shaft, and q1s is the rotor tip-path-plane 
side-side tilt about an axis that is vertical and normal to the rotor shaft. If qb is a lag degree of freedom, then q0 is the 
rotor collective lag, q1c is the horizontal displacement of the rotor center-of-mass in the rotor plane, and q1s is the 
vertical displacement of the rotor center-of-mass in the rotor plane [6]. Other degrees of freedom may be interpreted 
using equations (3) and drawing supporting sketches. The rotor modes corresponding to qnc and qns (n>1) and qN/2 
are called reactionless modes because they do not cause any transference of moments or forces from the rotor to the 
hub (fixed frame). The value of n goes from 1 to (N-1)/2 if N is odd, and from 1 to (N-2)/2 if N is even. The qN/2 
mode, called the differential mode, exists only if the number of blades is even. 
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Most of the wind turbines in the world are three-bladed. Therefore, we will assume N to be 3 in the rest of this 
paper. The formulation developed in the paper for N=3, however, is general and can be readily extended for more 
blades. Setting N=3 in equations (2), we obtain 
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We will call q1c the cosine-cyclic mode and q1s the sine-cyclic mode. These two cyclic modes, together with the 
coning mode, q0, lead to coupling of the rotor with the rest of the turbine.  Equations (3) determine the rotor 
coordinates, given the blade coordinates. The inverse transformation, yielding the blade coordinate given the rotor 
coordinates, is 

3,2,1;sincos0 =++= bqqqq bsbcb ψψ    (4) 
 

III. MBC: Transformation of Equations of Motion 
Most aeroelastic codes generate linear equations in the second-order form and, if required (for controls, for 

example), transform these to a first-order form. We derive MBC relations for both the second- and first-order 
systems.  

A. Second-Order System Equations 
Second-order system equations may be written as 

wFFuKXXCXM d+=++ &&&      (5a) 
The associated output equations are 

wDDuXCXCY ddv +++= &      (5b) 
where M, C, K, F, and Fd are respectively the mass, damping, stiffness, control, and disturbance matrices. The u and 
w are respectively the control and disturbance vectors. Note that the C matrix contains gyroscopic terms in addition 
to the structural damping terms, even though we designate it as a damping matrix. Similarly, K contains centrifugal 
terms in addition to the structural and aerodynamic stiffness terms. Also, each of these matrices contains direct and 
cross-coupling terms. For example, M contains direct blade inertias as well as blade-tower coupling inertias. 
However, the formulation we develop does not require a user to explicitly partition any of the matrices into sub-
matrices delineating direct and cross-coupling terms. The partitioning is implicit in the definition of the coordinates 
vector X (also called the physical vector in literature). Assume that X is expressed as 
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where XF is a nF×1 column vector representing the nF fixed-frame-referenced degrees of freedom and is the jth 
rotating degree of freedom for the bth blade. As is evident from (6), m is the number of rotating degrees of freedom 
for each blade. Thus the length of vector X is nF+3m, the total number of degrees of freedom for the full system. 
Most often, aeroelastic codes assume that the physical vector has the form (6). If not, we can always perform simple 
rows and columns exchange to transform system equations (5) such that the physical vector X assumes the form (6). 

j
bq

There are two methods to transform equations (5) to the nonrotating frame: the operational method and the 
substitution method. In the operational method, we apply the following summation operators to the rotating-frame 
equations of motion: 

∑

∑

∑

=

=

=

3

1

3

1

3

1

sin)_(
3
2

cos)_(
3
2

)_(
3
1

b
b

b
b

b

eqnsrot

eqnsrot

eqnsrot

ψ

ψ      (7) 

where rot-eqns refers to the rotating-frame equations of motion. Note the similarity of summation operators in 
equations (3) and (7). To accomplish these operations, we first need that the rot-eqns are available in an analytical 
form showing all periodic terms explicitly; the periodic terms involve trigonometric functions of sin(kΨb) and 
cos(kΨb) terms, where k in general can have any integer value depending on the system. First, we must express all 
products of trigonometric functions as sums of trigonometric functions. Next, we must perform cumbersome 
operations to ensure that the value of each n in these trigonometric functions satisfies the requirements of equations 
(3). Finally, we use transformation (3) to convert the rot-eqns to the nonrotating frame. The operational method is 
thus quite tedious and applicable only if we have equations of motion available in an analytical form. 

All aeroelastic codes generate equations of motion in a numerical form and, therefore, are not amenable to the 
operational method. We must instead use the substitutional method. In this method, we substitute the rotational 
degrees of freedom with the rotor coordinate using equation (4). If we do so, the three rotational degrees of freedom 
( , , ), corresponding to the jth degree of freedom for each of the three blades, may be transformed to 

nonrotating coordinates ( , , ) using the following relation: 
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where 
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Using (8), the full-system rotating-frame degrees-of-freedom vector, X , is expressed in terms of the nonrotating-
frame degrees-of-freedom vector, XNR, as follows 

NRXTX 1=           (10) 
where T1 is the block diagonal matrix: 
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Taking the first and second time derivatives of the two sides of equation (10), we obtain 
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where Ω is the rotor angular velocity and Ω is the rotor angular acceleration. The T2 and T3 transformation matrices 
are given by 
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Substituting for X and its time derivatives from equations (10) and (13) in equations (5a) and (5b), we obtain the 
system equations of motion in the nonrotating frame as 

wFuFXKXCXM NRdNRNRNRNRNRNRNRNR +=++ &&&    (17) 
and 

wDuDXCXCY NRdNRNRNRNRdNRNRvNR +++= &     (18) 
The subscript NR identifies the associated quantity to be in the nonrotating frame. The various matrices appearing in 
equations (17) and (18) are as follows 
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Note that the variable-speed operation affects only the stiffness matrix. Also, the disturbance matrix stays 
unchanged; this is because the disturbance w is already in the nonrotating frame. If Fc and mc are the number of 
controls in the fixed and rotating frames respectively, then the control vectors u and uNR are related as follows: 

             (20) NRcuTu 1=
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where 
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where Fo and mo are the number of outputs in the fixed and rotating frames respectively. In summary, following the 
application of MBC, the rotating-frame second-order equations (5a) and (5b) are transformed to the nonrotating-
frame equations (17) and (18).  

B. First-Order System Equations 
First-order system equations are generally expressed as 

wBBuAzz d++=&           (24) 
where z is the state-space vector. The A, B, and Bd are respectively the system dynamics, control, and disturbance 
matrices. The u and w are the control and disturbance vectors. The associated output equations are 

          (25) wDDuCzY d++=
The state-space vector, z, is related to the physical vector, X, as follows: 
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Using equations (26) , (8-16) and (20-23), equations (24) and (25) are transformed to the nonrotating frame as 
follows: 

wBuBzAz NRdNRNRNRNRNR ++=&        (27) 
and 

wDuDzCY NRdNRNRNRNRNR ++=       (28) 
The subscript NR identifies the associated quantity to be in the nonrotating frame. The various matrices appearing in 
equations (27) and (28) are as follows 
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In summary, following the application of MBC, the rotating-frame first-order equations (24) and (25) are 
transformed to the nonrotating-frame equations (27) and (28). Also, note that the dynamics matrix, A, is influenced 
by the variable rotor speed. 

C. Misconceptions About MBC 
Certain misconceptions regarding MBC frequently arise both in the helicopter and the wind energy fields. The 

main ones are: 
1) The rotor must spin at a constant speed. 
2) MBC transforms a time-variant system to a time-invariant one. 
3) The rotor blades must have identical structural and aerodynamic properties. 

None of the above statements is true. Explanatory remarks follow: 
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1)  In the previous section, we derived MBC relations assuming that the rotor speed, Ω, varies. MBC is thus 
applicable to variable-speed turbines. 

2) MBC does not eliminate all periodic terms, thereby transforming a time-variant system to a time-invariant 
one. MBC actually acts as a filter; it lets through terms that are integral multiples of ΩN and filters out the 
rest the other periodic terms, provided all blades are identical and the operating conditions are time-
invariant. 

3) In deriving the MBC relations, we never assumed the rotor blades to be identical, structurally or 
aerodynamically. Any dissimilarity will be reflected in the system matrices and MBC can be applied to 
such matrices. For dissimilar blades, however, MBC will not be able to filter out even those periodic terms 
that are not integral multiples of ΩN. 

The only restriction for MBC to be applicable is that the blades be spaced equally around the rotor azimuth. 
Another misconception (related to the second misconception listed above) is that Floquet analysis is not required 

if MBC is applied. Because MBC does not eliminate all periodic terms, a Floquet4,16 analysis is required, particularly 
if the blades are dissimilar.  

IV. Brief Description of the 5-MW Wind Turbine 
The conceptual wind turbine used for stability analysis in this paper consists of an upwind, three-bladed, 

126-meter diameter rotor mounted on top of an 87.6-meter tower. Jonkman et al [15] selected its properties so as to 
best match a few existing 5-MW designs. Salient turbine properties are summarized in Table 1; other properties can 
be found in the cited reference. The NREL offshore 5-MW baseline wind turbine has been used to establish the 
reference specifications for a number of research projects supported by the U.S. Department of Energy’s Wind 
Energy Technologies Program. 

 
Table 1. Summary of Baseline Wind Turbine Properties 

Rating 5 MW 
Rotor Orientation Upwind 
Control Variable Speed, Collective Pitch 
Rotor Diameter 126 m 
Hub Height 90 m 
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 
Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 
Rated Tip Speed 80 m/s 
Overhang, Shaft Tilt, Precone 5 m, 5°, 2.5° 
Blade Structural Damping Ratio 2.5% 
Tower Structural Damping Ratio 1.0% 

 
 
 
 
 
 
 
 

 

V. Results: Application of MBC to Stability Analysis 
For stability analysis, we consider two sets of operating conditions: parked conditions and normal operating 

conditions. In the parked condition, the generator torque is assumed to be zero, implying that the rotor is free to idle. 
All results are obtained using a structural damping ratio of 1% for the tower and 2.5% for the blades. Because the 
linearization scheme in FAST cannot yet handle active controls and dynamic stall, we ignore these effects during 
stability analyses.  

A. Parked Condition 
We analyzed stability characteristics of the 5-MW turbine for a number of parked conditions, which are 

mandated by the International Electrotechnical Commission (IEC) design standard17,18. However, to illustrate the 
importance of MBC, we present results for only one parked condition covered under the IEC load case 6.2a. Due to 
loss of grid, the turbine is free to idle. It encounters an extreme 50 m/s wind with the nacelle yaw set at 1400 with 
respect to the wind direction. All blades are feathered at 900. Under these conditions, trim analysis using FAST 
predicts that the rotor would idle at an angular speed of 0.0076 Hz. Using this rotor speed, we again used FAST to 
generate the system dynamic matrix, A. (see equation 24). Next, we used two approaches to compute the stability 
characteristics. 
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In the first approach, we azimuth-averaged the system matrix A and then computed its eigensolution. 
Eigenvalues provided the modal damping and frequencies; eigenvectors helped us identify the modes. Table 2 lists 
the modal dampings. A negative damping, identified in bold red, implies instability. 

In the second approach, we first performed MBC to obtain ANR. Then we azimuth-averaged the matrix ANR and 
computed its eigensolution. The third column in Table 2 lists the predicted modal dampings. 

 

Table 2. Modal Damping Ratios (nacelle yaw =1400; all blades pitched at 900) 

Damping ratio (%) Mode 
Without MBC With MBC 

1st lag 0.21628 -0.26399 

1st flap 0.64873 2.5098 

2nd flap 0.27054 2.0333 

tower 1st side-to-side -0.58981 2.1163 

tower 1st fore-aft 0.97208 2.7269 

tower 2nd side-side 0.80674 3.0489 

tower 2nd fore-aft 0.76662 3.9751 
 
We see that the two approaches not only yield different damping predictions, but can also lead to erroneous 

conclusions. If MBC is not used, instability might be interpreted as stability and vice versa. The reason is simple. In 
the first approach, direct averaging eliminates all periodic terms that contribute to system dynamics, therefore, 
erroneous results follow. In the second approach, the MBC is applied first; this appropriately transforms the periodic 
terms and also filters out the nonessential periodicity. Results are, therefore, improved. While averaging itself is not 
a bad approach, it must follow MBC (strictly, a Floquet analysis—not averaging—must follow MBC). 

B. Normal Operating Condition 
As is done in a typical stability analysis, we first obtain modal frequencies versus the rotor speed when the rotor 

is spinning in vacuum. These frequencies and associated modes offer insight into system dynamics and help 
interpret the stability modes. The results are obtained using MBC followed by eigenanalysis. This plot of modal 
frequencies versus the rotor speed, usually called the Coleman diagram, is shown in Fig.1. 

A consequence of the MBC transformation, described in Section III, is that the individual blade modes are 
transformed to rotor modes. Consider the first lag (edgewise) mode of each blade. Instead of seeing three first lag 
modes, one for each blade, we see three rotor modes: Lag 1_coll, Lag 1_prog, and Lag 1_reg. These modes are 
respectively the first-lag collective, progressive, and regressive modes and are physically more meaningful. Note 
that the tower-nacelle-drivetrain system sees the cumulative effect of all blades and not the individual blades. The 
rotor modes in fact represent the cumulative effect of all the blades. The collective lag mode is a rotor mode in 
which all the blades bend, within the rotor plane, in the same direction (either clockwise or counterclockwise) and 
with the same magnitude and phase. One can visualize that this rotor mode would interact with the drivetrain torsion 
mode. In the other two lag modes, the blades oscillate within the plane of the rotor in such a way that the effective 
center of mass of the rotor whirls about the rotor shaft. In the progressive mode, the center of mass whirls in the 
same direction as the rotor spin direction but at an angular speed higher than the rotor speed. In the regressive mode, 
the center of mass whirls in a direction opposite to that of the rotor spin and at an angular speed lower than the rotor 
speed. One can visualize that the mass imbalance associated with the rotor center-of-mass whirl can induce whirling 
of the rotor shaft bending mode and to some extent the tower bending mode. FAST, however, cannot yet model the 
shaft bending and, therefore, our results do not show any drivetrain whirl. 
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Figure 1.  Variation of in-vacuum modal frequencies with rotor speed (Coleman diagram). 

As with the lag modes, the rotor exhibits flap modes that represent the cumulative effect of all the blades. Each 
mode, however, has a different physical significance and interacts differently with the fixed (tower-nacelle) system. 
The collective flap mode is a rotor mode in which all the blades flap, out of the rotor plane, in unison and with the 
same magnitude. One can visualize that in this mode, the rotor cones back and forth and interacts with the tower 
fore-aft mode. In the progressive flap mode, the rotor disk wobbles in the same direction as the rotor spin direction 
and at an angular speed higher than the rotor speed. In the regressive flap mode, the rotor disk wobbles in a direction 
opposite to that of the rotor spin direction and at an angular speed lower than the rotor speed. 

In Fig. 1, we note that the nacelle yaw frequency, around 6.1 Hz, is hardly influenced by the rotor speed as 
expected. The variation of other frequencies is difficult to discern in this figure. Therefore, the results are replotted 
in Fig. 2. Note that the tower’s second side-to-side (Tower_SS2) modal frequency increases somewhat with rotor 
speed; this is due to its coupling with the second flap collective mode, which stiffens centrifugally as the rotor speed 
increases. Because of centrifugal stiffening, the frequencies of other collective modes (Flap1_coll and Lag1_coll) 
also increase with rotor speed. The frequencies of all progressive modes also increase with rotor speed. Note, 
however, that the progressive mode frequencies increase at rates much higher than those of the corresponding 
collective modes. All regressive mode frequencies decrease with rotor speed.  

Readers familiar with the isolated rotor modes, wherein the tower-nacelle subsystem is fully rigid, will notice 
interesting differences. For an isolated rotor, progressive and regressive modal frequency curves are symmetric 
about the corresponding collective modal frequency curve; at any rotor speed, Ω, the progressive mode frequency is 
ω_coll +Ω, and the regressive mode frequency is ω_coll –Ω, where ω_coll is the collective mode frequency. 
However, this symmetry is lost for the full system because different rotor modes interact differently with the tower-
nacelle subsystem. Even more interestingly, the Lag1_coll frequency curve is not even located between the 
Lag1_prog and Lag1_reg curves, normally observed for an isolated rotor. This is because the first rotor lag 
collective mode strongly interacts with the torsionally compliant drivetrain mode. The drivetrain mode frequency 
itself, however, is unaffected by the rotor speed. A more in-depth discussion of modal interaction amongst several 
subsystems is not in the scope of this paper. 
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Figure 2.  Variation of in-vacuum modal frequencies with rotor speed (land-based configuration). 
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Figure 3.  Variations of controlled blade-pitch angle and rotor speed with wind speed. 

 
Now we consider turbine normal operation in the presence of wind. The wind speed varies from 3 m/s (cut-in 

speed) to 25 m/s (cut-out speed). For a given wind speed, each blade’s pitch and rotor speed are set to the values 
depicted in Fig. 3. These values ensure optimum performance in region 2 and power regulation in region 3 [15]. 
Stability analysis results are presented in Figs. 4 and 5. 
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Figure 4.  Variations of damped modal frequencies with wind speed (land-based configuration). 

 
Figure 4 shows the variation of damped modal frequencies with wind speed. The exact physics behind the 

various modal frequency trends is still under investigation. However, we make a few observations. Frequencies of 
the nacelle yaw, Flap2_coll, and Flap1_coll, and Flap1_prog modes decrease with wind speed, indicating a strong 
influence of aeroelastic couplings.  A sudden change in the frequency trends near 11 m/s wind speed is due to the 
fact that the rotor speed is held constant beyond this wind speed (see Fig. 3). The cause behind the erratic behavior 
of some frequency curves beyond the 22 m/s wind speed is still to be examined. Note that all tower modes are 
relatively insensitive to the wind speed. 
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Figure 5.  Variations of modal damping ratios with wind speed (land-based configuration). 
 
Figure 5 shows the variation of modal damping ratios with wind speed. All modes have positive damping, 

implying that they are all stable. As expected, all flap modes are highly damped. However, damping of the rotor first 
flap modes exceeding 50% is somewhat high; in our experience with typical rotors, this damping is in the range 
30%–50%. This suggests that the blade is quite light in comparison to its aerodynamic capability. Typical blades 
have a Lock number in the range 8–10 (a Lock number is a nondimensional parameter that expresses the 
aerodynamic lift capability of a blade in comparison to its weight [4]). The blade in this study has an effective Lock 
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number of about 12. Damping of both the progressive and regressive lag modes increases rapidly as wind speed is 
increased from 3 m/s to about 11 m/s; thereafter it decreases and becomes almost constant beyond the wind speed of 
22 m/s. The drivetrain frequency increases monotonically except near a wind speed of 12 m/s where it shows a 
slight dip. The tower first side-to-side mode is the least damped showing maximum damping of about 0.8%. 

VI. Conclusions 
A new multiblade coordinate transformation (MBC) scheme is presented that is applicable to both constant- and 

variable-speed turbines; it also allows dissimilar blades. The scheme covers control, disturbance, and output-related 
matrices, which are often required by control designers. Equations governing MBC are developed for both the first- 
and the second-order systems. Next, we showed that the common approach of first time-averaging the system 
matrices over the rotor azimuth and then applying eigenanalysis can lead to erroneous modal and stability 
predictions. Direct averaging eliminates all periodic terms that contribute to system dynamic; therefore causing 
erroneous results. While averaging itself is not a bad approach, it must follow MBC. Finally, we showed application 
of MBC to the modal and stability analysis of a 5-MW turbine. 

Though the MBC formulation developed in this paper assumes a three-bladed turbine, the formulation is general 
enough to be readily extendable to a turbine with more than three blades. We plan to do so in the future. 
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